Structural Variation in the Lithiophilite–triphylite Series and Other Olivine-group Structures

نویسندگان

  • ARTHUR LOSEY
  • JOHN RAKOVAN
  • JOHN M. HUGHES
  • CARL A. FRANCIS
  • M. DARBY DYAR
چکیده

The crystal structures of five natural samples of the lithiophilite–triphylite series [Li(Mn,Fe)PO4; Li = M1, (Mn,Fe) = M2] were refined to determine structural variation along the Mn (r = 0.83 Å) ⇔ Fe (r = 0.78 Å) solid-solution series, and to elucidate variations in the atomic arrangement of Pbnm olivine. The refinements converged to R ≤ 0.017. Bonds at the O3 site are fundamental in understanding the response of the atomic arrangement as Fe concentration increases. The M2–O3a bond shortens by more than 0.06 Å, and the M2–O3b bond shortens by ~0.02 Å over the series. This shift of the O3 oxygen toward the two coordinating M2 sites is commensurate with an increase in the M1–O3 bond length by approximately 0.03 Å, and an increase in the distortion of the M1 site. Much previous work has focused on polyhedron distortions in the olivine structure. The angle variance for the M1, M2, and T polyhedra were calculated for each phosphate sample in this study and published silicate and germanate olivine structures. In each case, the angle variance of the phosphate olivines was found to be smaller in the M1 octahedron, which is in contrast to the other olivine-structure phases examined in this study. However, if the size difference in the radius of the M1 and M2 site cations is ≥0.17 Å, the distortion is greater in the octahedral site that is occupied by the larger cation. The structural differences along the lithiophilite–triphylite solid-solution series may have significant effects on its solid electrolyte properties, including rates of lithium diffusion and activation energies, and thus are important in the development and design of Li-olivine storage cathodes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relation Between RNA Sequences, Structures, and Shapes via Variation Networks

Background: RNA plays key role in many aspects of biological processes and its tertiary structure is critical for its biological function. RNA secondary structure represents various significant portions of RNA tertiary structure. Since the biological function of RNA is concluded indirectly from its primary structure, it would be important to analyze the relations between the RNA sequences and t...

متن کامل

Petrochemical Characteristics of Neogene and Quaternary Alkali Olivine Basalts from the Western Margin of the Lut Block, Eastern Iran

The Nayband strike-slip fault forms the western margin of the micro-continental Lut block in Eastern Iran. Neogene and Quaternary mafic volcanic rocks collected near Tabas, along the northern part of the fault (NNF; 15 Ma), and further to the south, along the middle part of the fault (MNF; 2 Ma), are within-plate sodic-series alkali olivine basalts with high TiO2 and up to >16% normative nephel...

متن کامل

Structure and Chemistry of Pre-cursor Troilite in Pallasites

Introduction: Pallasites are widely considered to be poor in sulphide, as such little is known about troilite evolution and processing. Very few examples exist indicating the multiple stages of troilite evolution. Discussed here are two such samples of FeS structures one is a nickel enriched FeS grain in the main group pallasite Hambleton. The other is a series of micron FeS particles within ol...

متن کامل

Damage identification of structures using second-order approximation of Neumann series expansion

In this paper, a novel approach proposed for structural damage detection from limited number of sensors using extreme learning machine (ELM). As the number of sensors used to measure modal data is normally limited and usually are less than the number of DOFs in the finite element model, the model reduction approach should be used to match with incomplete measured mode shapes. The second-order a...

متن کامل

Comparison of Seismic Input Energy Based on the Characteristics of Structural Hysteretic Behavior

The variation of earthquake input energy with characteristics of various structural systems, particularly in hysteretic states, has not been studied to such extent that creates enough con-fidence for proposing energy-based design criteria. In this paper, at first, based on a somehow new insight into the concept of earthquake input energy, two concepts of ‘Received Energy’ (ERec) and ‘Returned E...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004